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Abstract. Surfactant molecules in dilute solution may aggregate reversibly into extended 
structures. For suitably chosen molecules, the preferred packing involves a lccally flat 
bilayer. which tends to wander entropically at large distances. At  low temperatures (and/or 
high concentrations) the system forms a stack of flat sheets with one-dimensional quasi-long 
range order (a smectic liquid crystal). but at high temperatures or low concentrations. the 
stack can melt into a random surface structure that resembles a multiply connected labyrinth 
or ‘sponge’ of bilayer in a sea of solvent. Recent theoretical and experimental progress in 
understanding the properties of the sponge is reviewed. We argue that the sponge phase may 
provide a good system for the study of various liquid-state critical phenomena. 

1. Introduction 

Due to their amphiphilic property, surfactant molecules in solution aggregate reversibly, 
and can form a large variety of phases. For suitable molecular geometry these include 
phases in which the local structural unit is a semiflexible bilayer. When the characteristic 
distance scale of the structure we are considering is large compared to the bilayer 
thickness, the appropriate description involves the statistical physics of thin two-dimen- 
sional fluid films embedded in a three dimensional space. This limit is approached when 
the volume fraction of bilayer-forming material is small compared to unity, which we 
assume from now on. We also assume that the free energy penalty per unit length for 
tearing the bilayer is large enough for us to neglect the presence of edges in our two- 
dimensional film. The same applies to seam-like defects in which three or more pieces 
of bilayer meet along a line. (In practice. of course, defects such as these do have some 
finite energy scale, and their effects will be discussed in section 7.) 

To arrange a given volume fraction of self-avoiding, flexible bilayer, with no edges 
or seams, in three-dimensional space is not easy. Two trivial solutions spring to mind: a 
one-dimensional stack of infinite sheets (the lyotropic smectic A phase, figure l(a))  and 
a phase of closed vesicles (figure l(b)). Another, less obvious, choice is to make a 
labyrinth or sponge-like phase of random surface (figure l(c)) [l], which can also be 
thought of as a defect-ridden version of a cubic ‘minimal surface’ phase [ 2 ]  (having lost 
all long-range order). We have proposed this as the structure of the so-called ‘anomalous 
isotropic’ or ‘L3’ phase that has been described in a number of dilute surfactant solutions 
[3-61. Conductivity, neutron scattering and flow-birefringence data are all consistent 
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Figure 1. ( a )  Smectic liquid crystal. ( b )  Dilute vesicles. (c) Symmetric sponge. These are all 
cuts through a three-dimensional structure. In  each case, if a point is chosen arbitrarily and 
labelled I (inside) the surface uniquely partitions the rest of space into I and o (outside) 
regions. These have the same statistics in (c) (and also ( a ) )  but different statistics in (b ) .  See 
section 3. 

with this idea, but the strongest evidence is now from small-angle light scattering 
measurements [7], reviewed in section 4 below. 

2. Elasticity of bilayers 

The relative stability of the sponge phase can be explained in terms of the entropy and 
elastic energy of the bilayer [l]. Within a harmonic approximation the elastic energy of 
a fluid film can be written as [8-101 

E = (KH‘ + KK) d S  (1) J 
where Hi s  the mean curvature and K the gaussian curvature of the film. The parameter 
K is the mean bending constant, which is positive, and I? is the gaussian bending constant, 
which obeys - 2 ~  < K < 0 (required for stability of the film [9]). It is known (Gauss- 
Bonnet theorem [9, 101) that 

J K d S  = 4x(n, - ah) (2) 

where n, is the number of disjoint pieces or ‘components’ of the film, and nh its number 
of handles. Both of these vanish (per unit volume) in a perfect smectic, although a more 
realistic description allowing neck-like defects will give a small negativevalue for n, - ah. 
For vesicles the corresponding sum is positive, whereas for a randomly connected 
sponge it may be moderately negative, if there is on average more than one handle per 
component. Typically a sponge will have one infinite and many finite components [l]. 

The rigidities K and I? have units of energy, and can be considered as of comparable 
magnitude (under most conditions). When K is not too large compared to kB T ,  we expect 
thermal fluctuations to become important, and in fact they lead to a ‘softening’ of the 
bilayer at large distances. Within perturbation theory, an effective rigidity can be 
calculated [9-121: 

K(E) = K - (3/4n)k,Tlog(g/a) (3) 
(with a similar equation for K, [lo]). In (3), E is some length scale corresponding to a 
coarse-grained bend and a is the bilayer thickness, which provides a short cutoff on the 
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thermal undulations of the film. The decrease of the elastic constant with E means that 
over a certain distance the bilayer will tend to lose its orientational order. This persistence 
length E K  can be (crudely) equated to the length at which the effective bending constant 
goes to zero [13]: 

E K  = a e x p ( 4 n ~ 1 3 k ~ T ) .  (4) 

We might expect that a smectic phase of bilayers will ‘melt’ into a sponge-like 
phase, when its mean layer spacing d = a / q  is of order Ex. For suitable bilayer-forming 
surfactants, this may be of order 500-1000 A; the corresponding volume fraction q is 
then a few per cent. The characteristic pore size of the sponge so formed will be of order 
the persistence length of the bilayer. (This argument is rather oversimplified, as the 
gaussian rigidity term may also favour melting to a handle-rich sponge [2, 181; experi- 
mentally the phase often remains stable to quite high concentrations.) If the sponge is 
diluted further, one may expect it to fragment into a phase of small droplets or vesicles, 
which are ultimately favoured by translational entropy [ l ,  14, 151. 

A closer examination shows that these transitions under dilution are linked to the 
renormalization of the elastic constants [l, 2, 141, and that the boundaries of stability 
the sponge phase should be nearly straight lines if the phase diagram is plotted as a 
function log(q). This is because the characteristic pore size of the sponge, E ,  varies as 
a / q ,  and the phase boundaries depend on q mainly through the log(E) corrections to 
the elastic constants (equation (3)) [16]. This unusual scaling has now been confirmed 
to reasonable accuracy, for the CI2E5 system in water [17]. 

3. Structure and symmetry of the sponge phase 

The convoluted film structure (without seam or edge defects) assumed to arise in a 
sponge phase has a very special property. Such a film (in three dimensions) divides space 
into two disjoint regions. These may be arbitrarily labelled ‘inside’ (I )  and ‘outside’ (0) .  
The partitioning is unique up to a global interchange of I and 0.  Thus the bilayer can be 
imagined to lie everywhere at the interface of two ‘different’ solvents ( I  and o) ,  although 
these are constituted of identical material. (Viewed this way, the structure closely 
resembles a microemulsion [ 14-16], in which I and o regions really are different solvents: 
water and oil.) 

This analogy is useful for estimating the entropy of the random bilayer, for example 
in the context of a lattice model [ 11. It also reveals a very profound fact. The sponge has 
a hidden degree of freedom, and a special symmetry, associated with the equivalence of 
I and 0 .  In a ‘symmetric’ sponge there are equal amounts of I and 0 ,  which is natural 
since the bilayer Hamiltonian (1) is symmetric under interchange of I and o (as is any 
other Hamiltonian that respects the equivalence of opposite sides of a bilayer). On the 
other hand, it is possible to envisage a state with different amounts of I and 0 ,  for example 
with much less solvent ‘inside’ the film than ‘outside’. In the limit of large asymmetry, 
one recovers the dilute vesicle structure of figure l (b) .  The transition from a symmetric 
sponge to a weakly asymmetric state (which has only a small difference between the 
total volumes of I and o regions), or a strongly asymmetric one (vesicles), is an example 
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Figure 2. Several different types of pseudobinary phase diagram in the p ,  A plane. These 
have the same topology when plotted in the usual q ,  Tplane.  The broken line is a line of 
second-order phase transitions from a symmetric sponge to an asymmetric one. T is a 
tricritical o r  higher-order critical point and c a liquid/gas critical point. 

of spontaneous symmetry breaking. This special Ising-like symmetry of the sponge has 
major experimental consequences, as we now describe. 

4. Landau theory 

Due to the special symmetry, the Landau free energy of a sponge phase depends on two 
order parameters [7,18,19]. This is true even in a binary system of surfactant + solvent. 
One order parameter is the volume fraction of bilayer q (or its departure from a 
reference value p = q - qo) and the other one is a parameter 7 which we may take as 
the difference in volume fraction of the ‘inside’ (I )  and ‘outside’ (0)  regions of solvent. 
This parameter vanishes in a symmetric state and, since I and o are made of identical 
material, it can enter only in even powers in the Landau expansion. We expect p and 11 
to be coupled at the lowest order allowed by symmetry. This argument gives the following 
Landau expansion of the thermodynamic potential 118,191: 

A@ = pp + Ap2 + cup4 + fir2 + bq4 + v p q 2  ( 5 )  
where p ,  A ,  a, p, 6 and v are numerical coefficients that can be estimated, for example, 
from the lattice model of [l, 151. 

Under variation of these coefficients, several different types of ‘pseudobinary’ phase 
diagram can be generated (figure 2) [19]. The transition between the sponge and the 
dilute phase can be either first order or second order; in fact we predict (even in a binary 
system) a line of second order transitions on the q ,  T plane at which the I/O symmetry 
is spontaneously broken. In addition, a regular liquid gas critical point can exist either 
between two symmetric sponge phases, or two broken symmetry phases, of different 
volume fraction. Symmetric tricritical behaviour [20] should be unusually easy to obtain 
in these systems. It should also be relatively easy to study various other higher order 
critical points. The great advantage of bilayer containing systems over other multi- 
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component liquids is that the Ising-like I/O symmetry remains exact over a finite range 
of temperatures and compositions. In contrast, for most other systems there is some 
composition-dependent analogue of the magnetic field which must carefully be tuned to 
zero at each temperature [20]. (An exception is the 3He/4He system [21].) 

5. Small angle light scattering 

By adding suitable gradient terms to ( 5 ) ,  we may generate a Landau Ginzburg theory 
and compute correlation functions, as are probed by SALS [7, 191. Experimentally the 
only observable fluctuations are in the surfactant density, since clearly there is no 
scattering contrast between I and o regions (which contain identical matter). Suppose 
that we are in the symmetric sponge state, approaching the I/O symmetry-breaking line, 
but not too closely, in which case we may keep a gaussian treatment of the fluctuations. 
So long as A > 0, we can write: 

A@ = pup + Ap' + /3qz + vpq2 + y(Vq)' + t ( V p ) '  + < Vq Vp.  ( 6 )  
Far from any tricritical point, we can drop the last two terms [7, 191, in which case the 
fluctuations of the q order parameter are of the usual Ornstein-Zernicke type. However, 
these cannot be measured. What we can measure (and predict) is the correlation 
function J ( q )  = constant x (pqp-J, which does probe (indirectly) the long-wavelength 
correlations of q ,  via the q'p coupling term in (6). The calculation gives [7] 

where A and B are combinations of the previous parameters, and Eq is the correlation 
length for I/O density fluctuations. At  this level of approximation, E ,  should diverge like 
(q - qc).-'i2 near the symmetry-breaking line. There are two contributions in (7): one 
from the intrinsic fluctuations of p controlled by A ,  and the other from fluctuations 
induced by the coupling to q in (6). The second contributionvaries (within the Gaussian 
approximation) like q-' near the critical point, which is a most distinctive behaviour. 
This unusual scattering signature has indeed been observed, and we regard it as decisive 
evidence for some sort of sponge-like bilayer arrangement that divides space sym- 
metrically [7]. 

6. Critical and tricritical effects 

More generally, the scattering functions on the asymmetric side of the transition can 
also be predicted, as can those in the vicinity of a tricritical point, using an extension of 
the Gaussian fluctuation approach [19]. Although the published data [7] is for a system 
in which the transition is weakly first order, there is a closely related system in which a 
continuous transition is apparently seen [ 191, and for which these (more complicated) 
predictions are relevant. This system consists of aqueous SDS bilayers slightly swollen 
with dodecane and pentanol [4, 51; to the accuracy so far measured it does show a 
divergence in the osmotic compressibility and the correlation length as one crosses a line 
in the pseudobinary phase diagram [19]. 

Close to a tricritical point, a mean-field approach (plus Gaussian fluctuations) should 
be quite accurate [20], but on the second-order I/O line far from tricriticality the usual 
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nowGaussian critical fluctuations should play a role, just as in any other three-dimen- 
sional system with Ising-like symmetry. However, the critical behaviour of the sponge 
system is unusual for two reasons. Firstly, unless measurements are made at fixed 
surfactant chemical potential p ,  the Ising-like exponents associated with the I/O sym- 
metry breaking transition (as given in [14], say) are subject to Fisher renormalization, 
and therefore increased by a factor (1 - a)-’ [ 2 2 ] .  (This reflects the singularity in y that 
arises as the transition is approached by varying either Tor  ~1 with the other one fixed. 
The effect is present even for a binary system at the I/O symmetry-breaking line.) 

The second unusual aspect, mentioned above, is that experimentally one cannot 
observe the I/O order parameter directly, only its effect on the surfactant density p.  In 
the symmetric sponge this is quadratic in the order parameter, which gives a further 
change in the exponents measured in light scattering. In terms of the usual d = 3 Ising 
exponents (not to be confused with coefficients in the Landau expansion, equation (6)) 
results are easily obtained for the dependence on A ,  the distance from the critical line 
either in ~1 or in T. For the correlation length, we find 5‘ - A-”(’-@). The surfactant 
osmotic compressibility diverges asXs - A-(2y-d”) / (1-n)  when approaching the transition 
from the symmetric side; when approaching from the broken symmetry phase we find 
instead xa - C ~ A - ( Y - * P ) / ( ’ - ~ )  + C ~ A - ( * Y - ~ ” ) / ( ~ - ~ ) ,  with c1 and c 2  non-singular constants. 
Inserting the numerical values, we get 5 - A - ” ”  (-A-’/*); xs - A-’ 6o and 
xa - A-” 66 ( -A-”*)  where the values in parentheses are those from the mean-field/ 
Gaussian fluctuation approach [ 7 ,  191. For the scattering at criticality, the result [23] is 
Z(q # 0, A = 0 )  - qd- j f2q  - 4-”93 ( 4 - 9 .  

7. Defects 

In presenting these exponents for our second order phase transition, we should consider 
again the role of edge and seam defects in the bilayer. These were neglected above, and 
in their absence the partitioning of space into I and o regions is well-defined. If defects 
are very rare (which we expect to often be the case on energetic grounds) our description 
remains valid over very large regions of space. On the other hand, if defects are very 
common (for example if there is a large hole through the bilayer, on average, in every 
two or three ‘pores’ of our sponge) the I/O symmetry will no longer play a role, and 
most of the effects we have discussed in this paper will disappear. This crossover is a 
remarkable one since puncturing the bilayer does not actually break the I/O symmetry, 
it just makes it less and less clearly defined. At present we have no real theoretical 
understanding of this unusual crossover; however, we may advance a conjecture that 
defects, by leading to the ‘abolition’ of I/O symmetry at large length scales, cause the 
second order phase transition to become slightly rounded [7, 181. If so. the critical 
exponents discussed above may be hard to measure unless care is taken to ensure that 
the defect energies are genuinely large. (They may be hard to measure anyway, since 
the ‘bare’ correlation length in the system is large (-EK) even before any critical pheno- 
mena set in.) In fact for the aqueous SDS dodecane pentanol system discussed above, 
there is some prospect of deliberately decreasing the defect energy by varying the salt 
content of the aqueous phase. This should allow the crossover region to be explored in 
more detail. 

8. Conclusions 

We have seen that in certain systems, an isotropic liquid phase made of random con- 
nected bilayers is expected. The bilayer film divides space into two domains arbitrarily 
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labelled inside (I) and outside (0) .  The symmetry of the bilayer Hamiltonian with respect 
to I and o may be spontaneously broken, but even in the unbroken phase it leads to some 
novel effects. The concentration fluctuations for the surfactant are not Ornstein-Zernike 
but have a strikingly different q dependence (at least in certain parts of the phase 
diagram) due to the coupling between the I/O order parameter and the surfactant 
concentration. 

One may also observe, in suitable systems [5,19], a critical line between two isotropic 
liquids. Starting with such a system, it should not be too hard to attain a symmetrical 
tricritical point. Another interesting prospect is the smooth abolition of the critical line 
(perhaps we should more accurately call it a ‘pseudocritical’ line!) as defect energies are 
reduced. Finally, we should add that the dynamical properties of the sponge phase, 
especially near the I/O symmetry breaking line [24], and near the transition to the smectic 
state [25] are the subject of current theoretical and experimental study. 
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